脑核磁共振图像与虚拟人脑图像分割技术研究

第1页 / 共148页

第2页 / 共148页

第3页 / 共148页

第4页 / 共148页

第5页 / 共148页

第6页 / 共148页

第7页 / 共148页

第8页 / 共148页
试读已结束,还剩140页,您可下载完整版后进行离线阅读
脑核磁共振图像与虚拟人脑图像分割技术研究-知知文库网
脑核磁共振图像与虚拟人脑图像分割技术研究
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
南京理工大学博士学位论文脑核磁共振图像与虛拟人脑图像分割技术研究进。理论上遗传算法可以得到全局最优解,但是由于种群中的个体受最优值影响较大,在一定的计算步骤内很难得到最优解。粒子群算法中,使用了全局信息,该方法收敛速度快,但该算法受种群最优值的影响,整个群体易陷入局部最优。本文使用初始信息与突变对粒子群算法进行改进,使其更易于找到全局最优点。实验证明:该方法具有一定的通用性和较好的性能。(4)提出了三种针对脑MR图像的分割方法:◆提出一种基于粒子群算法的高斯混合模型,并利用高斯混合模型可以较好地描述整幅图像性质的特点来改进活动轮廓模型,使改进的模型更适合脑MR图像的分割。高斯混合模型的关键是其参数估计,通常使用Expection-Maximization(EM)算法进行高斯混合模型的参数估计,但该算法是局部优化算法,且对初值依赖性强。为此,将粒子群算法引入到高斯混合模型的参数估计中,利用粒子群算法良好的全局优化特性来提高参数估计精度,并将高斯混合模型与传统的活动轮廓模型相结合,利用粒子群算法估计高斯混合模型的参数以获得图像的统计描述,并以此构造新的活动轮廓约束项,改善了活动轮廓模型的图像分割性能。利用图像多种信息构造新的多元信息场,使得由新的信息场构造的高斯混合模型与活动轮廓模型结合后更具抗干扰的特性。◆提出一种基于Gbbs理论的高斯混合模型。传统的高斯混合模型仅考虑了图像灰度信息,因此对噪声较为敏感。为了克服高斯混合模型的局限性,本文利用Gbs理论和图像结构信息构造各向异性Gibs随机场,并将其引入到高斯混合模型框架中,完善高斯混合模型分类效果,使其克服噪声影响的同时还能够保持细长拓扑结构区域信息以及角点区域信息。实验证明本文提出的算法可以得到较好的分类结果。◆提出了一种变分耦合模型,将配准知识与曲线演化理论融合到一起。通过求解两个耦合的非线性偏微分方程使得模型的总能量达到最小值,实现两者信息的融合,同时达到配准与分割的目的。传统的基于配准模型的分割方法往往仅能对单一模态成像机制得到的图进行配准,而且针对不同人的脑中的脑室、海马体等组织结构差异较大的情况,很难得到较好的分割结果。将基于信息熵的非线性配准与基于图像全局信息与局部信息的曲线演化模型相结合,提出耦合模型,使用变分方法进行求解,实验结果表明本文提出的算法可以得到较好的分类结果。(5)提出了三种虚拟人脑图像的分割方法:◆提出一种基于HSV颜色空间的虚拟人脑图像分割方法。在HSV颜色空间对其进行分析,提出一种改进的各向异性扩散方程,并构造混合信息场,以降低噪声、过渡区域等因素的影响。使用0su算法与一种新颖的快速符号表算法对饱和度信
喜欢就支持一下吧
点赞15 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容