基于Hadoop的交通信息物理系统交通诱导方法研究

第1页 / 共48页

第2页 / 共48页

第3页 / 共48页

第4页 / 共48页

第5页 / 共48页

第6页 / 共48页

第7页 / 共48页

第8页 / 共48页
试读已结束,还剩40页,您可下载完整版后进行离线阅读
基于Hadoop的交通信息物理系统交通诱导方法研究-知知文库网
基于Hadoop的交通信息物理系统交通诱导方法研究
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
AbstractAiming at the characteristics of high throughput data traffic and timeliness,inorder to more efficiently handle this type of data,explore a method to realize service modelbased on cloud computing,traffic data can be extended by Hadoop technology architectureprocessing,services,and implement a prototype system.The main idea of this method isthe parallel processing for distributed file using Hadoop's ability to deal with the massivetraffic data,and to integrate the Flume+Kafka+Spark Streaming data system constructionand processing as the basic points of innovation platform,finally reference A*algorithm,optimization of road network equilibrium assignment,simplified path search method.Thisprocess has higher efficiency and higher reliability,and has more prominent advantagescompared with traditional methods.Around this method the design and implementation ofthe traffic information service system based on Hadoop,according to the actual traveldemand,taking into account the optimal allocation of city traffic flow,traffic guidanceprovide distributed service to users;by automatically triggering Hadoop access accordingto user request calculation task to build a middle layer function,solves the original Hadoopthe off-line batch processing mode is not suitable for real-time online information serviceproblems.Finally,a simulation example is given to demonstrate the effectiveness of thesystem.Test results show that this method can greatly improve the data processingefficiency,achieved satisfactory results,and further demonstrates the reliability of thismethod for the data processing and effectiveness,to ensure the traffic system data flowtimeliness and high tolerance type processing.Keywords:traffic guidance system,Hadoop frame structure,big data systemconstruction,algorithm optimization,processing path planning
喜欢就支持一下吧
点赞8 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容