DGA域名检测方法的分析与实践

第1页 / 共36页

第2页 / 共36页

第3页 / 共36页

第4页 / 共36页

第5页 / 共36页

第6页 / 共36页

第7页 / 共36页

第8页 / 共36页
试读已结束,还剩28页,您可下载完整版后进行离线阅读
DGA域名检测方法的分析与实践-知知文库网
DGA域名检测方法的分析与实践
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
AbstractThe article first introduces the research background and value of DGAdomain names,the characteristics and basic definition of DGA domainnames.Then use the current mainstream intelligent algorithms:XGBoost,Naive Bayes,Multilayer Perceptron and Recurrent Neural Network tocombine several feature extraction methods,including N-Gram model,statistical domain name feature model and character sequence model forfeature extraction and experiment.The results are compared and analyzed toobtain better feature extraction and algorithm combination.According to theexperiment,Multilayer Perceptron based on 2-gram feature model has thebest effect on DGA domain name detection.Although mainstream detection methods have achieved good results indetecting DGA domain names,there are still several major problems:modeldetection capabilities still have room for improvement,lack of evolutionarytraining data,and self-defense of detection models.This paper is based onthe Multilayer Perceptron of the 2-gram feature model,and compares theimportant Hyperparameters in the combination to obtain a model with higherdetection ability.Finally,in view of the lack of evolutionary training data anddetection model's own security issues in mainstream detection technologies,this thesis proposes an improved training set by using an improved WGANcharacter domain name generator to generate adversarial domain names.Thismethod generates adversarial domain names that are more in line with humannaming habits than traditional GAN models.Conversely,adding thesetraining sets containing adversarial factors increases the model'sdiscriminative hit rate for unknown domain names,thereby enhancing themodel's own defense capabilities.Key words:DGA;Machine Learning:Deep Learning:WGAN
喜欢就支持一下吧
点赞15 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容