社交网络中广告信息检测方法研究与实现

第1页 / 共41页

第2页 / 共41页

第3页 / 共41页

第4页 / 共41页

第5页 / 共41页

第6页 / 共41页

第7页 / 共41页

第8页 / 共41页
试读已结束,还剩33页,您可下载完整版后进行离线阅读
社交网络中广告信息检测方法研究与实现-知知文库网
社交网络中广告信息检测方法研究与实现
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
AbstractIn order to improve people's efficiency of obtaining information resources andimpro ve people's cognition of crawler system,this system development and design isspecially carried out.This system chooses React.j s+NeXT.Js Egg.Js MySQL according to thedev elopment requirements,which is suitable for its own technology stack.Based onthe und erstanding of the front-end technology,a structured small crawler is mainlywritten for a specific website,and some measures to bypass anti-crawler are adoptedto carry out incr emental processing and parallel processing on it logically andintegrate it into the server side.Then,the management platform and user interactionplatform are prepared for its c onfiguration,so that the management entity andinteraction data can be visualized,and th e recommendation algorithm for the labelingof user interaction data can be realized.Information system part of the application of network technology and commonlyus ed optimization scheme,which for user-friendly,request optimization and otheraspects of their own understanding of the optimization process.Finally,I try to deploy the cloud server of the system and configure theperforman ce detection application,so as to check the running state of the system atany time and make adjustments.This paper is to describe the technical principles and applications,and then asimpl e function,interface,data and other aspects of the system for a simpleintroduction and analysis.and show the effect.KeyWords:Incremental crawler;System development;Tag recommendationalgori thm:The whole stack:socket
喜欢就支持一下吧
点赞6 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容