基于深度学习的商品推荐系统研究

第1页 / 共55页

第2页 / 共55页

第3页 / 共55页

第4页 / 共55页

第5页 / 共55页

第6页 / 共55页

第7页 / 共55页

第8页 / 共55页
试读已结束,还剩47页,您可下载完整版后进行离线阅读
基于深度学习的商品推荐系统研究-知知文库网
基于深度学习的商品推荐系统研究
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
北京理工大学珠海学院2020届本科生毕业论文Research on Commodity Recommendation System Based on DeepLearningAbstractIn order to more quickly and accurately recommend products of interest to users,this paperstudies the recommendation system from three directions such as traditional algorithm anddata mining and deep leaming.Alibaba's product behavior data of 8477 users from Novem-ber 16 to December 16,2018 are selected.Feature extraction is based on two dimensionsof users and goods.And we use R and Python to implement the recommendation systemfor LR and GBDT and DeepFM respectively.Finally,we conclude that DeepFM has betterprediction effect than LR and GBDT.It can more accurately judge whether to recommend ornot for users to buy this product.It also gives some suggestions to the merchants.Throughthe prediction of the recommendation system,it can promote the users who are interestedin the products,so as to increase the income.Keywords:Recommendation System DeepFM Algorithm GBDT Algorithm LR Al-gorithm
喜欢就支持一下吧
点赞6 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容