基于深度学习的垃圾分类方法研究

第1页 / 共21页

第2页 / 共21页

第3页 / 共21页

第4页 / 共21页

第5页 / 共21页

第6页 / 共21页

第7页 / 共21页

第8页 / 共21页
试读已结束,还剩13页,您可下载完整版后进行离线阅读
基于深度学习的垃圾分类方法研究-知知文库网
基于深度学习的垃圾分类方法研究
此内容为付费资源,请付费后查看
10
限时特惠
20
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源
© 版权声明
THE END
北京理工大学珠海学院2020届本科生毕业论文Research on garbage classification based on deep learningAbstractThis paper studies garbage classification based on deep learning methods.Since convolu-tional neural networks are particularly prominent in image recognition applications,it usesconvolution operations,pooling operations,local connections,and weight sharing to formthe classified model which is a brand new convolutional neural network.Training,recogni-tion,classification and prediction of five kinds of garbage images were analyzed.With thesame experimental conditions,compared with the traditional artificial neural network,theresults show that CNN improves the recognition accuracy by about 15%.It finds that theimage resolution is proportional to the time.In this model,the recognition of each categoryis studied separately,which shows that the predicted accuracy of paper and plastic is morethan 90%,which is easier to predict success than other categories.Keywords:Convolutional neural network Artificial neural networks Pooling layer Lo-cal connection
喜欢就支持一下吧
点赞10 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容